
MMKCCHROPPRROOEEESSSSOORR AANNIB

CCOOMMPPUUTTEERR AAPRCCHHITTEEETTUURREE

UNIT - 4

memory optimisation cont .

Ee YO subsystem

feedback1correctionsivibha@pesu.pes.edu VIBHA MASTI

TYPES OF CACHE MISSES

D compulsory Miss

o when cache initially empty , compulsory miss
° Very first access to block; cold miss
° Occur in infinite cache
° Independent of size

2) Capacity Miss

• Lack of space
° Cannot hold all blocks of a program
• Occur on finite FA cache
° Decrease as cache size increases

3) Conflicting Miss
• set associative mapping or direct mapped , not FA cache

. Due to constraints
,
even if blocks empty

° Decrease as associativity increases

2 : I RULE

° Miss rate halves when associativity doubles

AVERAGE MEMORY ACCESS TIME

additional cc if

→
constant y miss incurred

AMAT = Hit time + miss rate x miss penalty

hit time

~ bus
j

width
c-

c S

C 3

bus c-

cpu
width cacheI

miss main

penalty : memory
affected by
bus width

° Reduce AMAT :

- Reduce hit time : faster
,
smaller cache

- Reduce miss rate : larger cache
- Reduce miss penalty

. Miss penalty depends on bus width

fire optimizations

1. first optimisation : Larger Block size to Reduce Miss Rate

° block size -- 8 means that 8 words fetched at a time

when block is fetched

° only first word miss when CPU makes request (compulsory
miss

° if application exploits spatial locality of reference

° if block size = 16 instead
,
16 words fetched at a time

DRAWBACKS

Bus width Issue

if block size > bus width
, multiple clock cycles required

to fetch one block Cbus width not addressed)

cache pollution
unnecessarily bring in unwanted data due to large block

size

Increased Miss Penalty
due to bus width issue

Increased conflict Misses

due to less number of blocks and mapping constraints

ADVANTAGES

° Utilises spatial locality of reference

° Reduces compulsory misses

2. Second optimisation : larger cache to Reduce miss Rate

DRAWBACKS

. increased hit time

. increased cost
,
area

, power (see graphs in ppt)

ADVANTAGES

° reduced capacity misses

• accommodate larger memory footprint

3. Third Optimisation : Higher Associativity to Reduce Miss Rate

° increase associativity to optimal level , not full chit rate)

DRAWBACKS

° Increased hit time : indexing time

° complex design

ADVANTAGES

° reduced conflicting miss

° reduces miss rate and eviction rate

cache size vs Miss Rate

Block size vs Miss Rate

Assume the memory system takes 80 clock cycles
of overhead and then delivers 16 bytes every 2
clock cycles. That is, it can supply 16 bytes
in 82 clock cycles, 32 bytes in 84 clock
cycles, and so on... Which block size has the
smallest average memory access time for each
cache size?

B:

Miss Rates

0

0000
AMAT -- hit time t miss ratex miss penalty

Assume hit time -- Icc

For cache size 4k

miss penalty of 16 - byte block = 21-80 = 82

32 -byte block = 84 cc

64 -byte block = 88 cc

128 -byte block = 96 cc

256 - byte block = 112 cc

AMAT 16 byte = It 8.571- x 82 = 8.0274

32 byte = I t 7.241×84 = 7.0816 → lowest

64 byte = I t 7.001 . x 88 = 7.16

128 byte = I T 7.78 -I- X96 = 8.4688

256 byte = I t 9.51-1 - x 112 = 11 . 6512

4 . fourth optimisation : Multilevel caches to Reduce Miss Penalty
sees only what
Ll generates ,
not CPU

L1 cache
L2 cache ↳ cache

cpu main

memory

° Memory wall problem : gap between memory Ee processor speeds
- smaller

,
faster cache

- larger cache

- trade - off required

• Miss rate :

- global miss rate (Wrt CPU) miss rate
u
x miss rate

uz

- local miss rate (higher cache level)

100
> LI 7

requests L2

80

HR L1 = 80/100 HR L2 = 15/20

MR LI = 20/100 MR L2 = 5/20

↳MR = 5/100

Suppose that in 1000 memory references there are
40 misses in the first level cache and 20 misses
in the second – level cache. What are the
various miss rates?

Assume the miss penalty from the L2 cache to
memory is 200 clock cycles, the hit time of the
L2 cache is 10 clock cycles, hit time for L1
cache is 1 clock cycle and there are 1.5 memory
references per instruction.

What is the average memory access time and
average stall cycles per instruction? Ignore
impact of writes.

For 2-Level cache

AMAT = hit time + miss rate ✗ miss penalty

= hit time
,,
+ miss rate

,,
✗ miss penalty ,,

- (1)

miss penalty , , = hit time ,, + miss rate Lz ✗ miss penalty iz
- (2)

(2) in d)

AMAT -- hit time
↳
+ miss rate

,,
✗ (hit time ↳ + miss rate ↳ ✗ miss penalty ,}

Avg mem = Miss per inst ,, ✗ HitTime iz
+ Miss per instrzz ✗ miss penne

stalls per inst

Q:

miss rate Clocalq global) of 4 cache = ¥-0
= 0.04

global miss rate L2 cache =20_ = 0.02

1000

local miss rate L2 cache = 21 = 0.5
40

miss penalty = 200 CC
L2

hit time = l CC hit time
↳

= 10 CC
4

I -5 reflinst

AMAT -- hit time ut miss rate ,,x
(hit time iz t miss rate Lzx miss penalty ,}

Avg Mem = Miss per insta x HitTime iz
t Miss per instrrz x miss penn

stalls per inst

= miss rater, × miss penalty ,

AMAT -- I + 0.04 (lot 0.5×200)

= It 0.04 (10+100) = 1-10.04 (110) = 5- 4 CC

AMSPI = 0.04

Oi. Consider a system with a 2 - level cache . Access time of

Ll cache
,
L2 cache and main memory are 1ns

,
10ns and

500ns respectively . The hit rates of 4 cache
,
L2 cache are

0.8 and 0.9 respectively . What is AMAT ?

AMAT -- hit time
,,+ miss rate ,,

✗ (hit timely + miss rate Lzx miss penalty ,}

AMAT = 1+0.2110+0.1×500)

= 13ns

cache size vs miss rate

types OF bache Hierarchy
1. Inclusive cache

° LI is a subset of L2
• cache size = L2

• miss on Ll
,
search L2

°

any modifications on 4 must be reflected in L2 (write

through or write back)

2. Exclusive
• L2 only contains blocks not present in L1

,
and so on

° modern day caches
• Read miss on 4

,
search L2 and if hit

,
block moved to Li and

possible evicted block moved to L2 cache
• L2 : victim cache
• If miss on L2 also

,
fetched from mem and placed in 4

3. Non- Inclusive Non- Exclusive
• back inclusive

• most modern processors

• data in u may or may not be present in L2

5 . Fifth optimisation : Giving Priority to Read Misses over write Misses

° Processor issues read or write request

- Read request : performance - in order to continue with CPU

operation read must be fulfilled

main

memory

Ll cache
L2 cache

↳ cache

cpu (/#
u

write buffer write buffer

(intermediary) (intermediary)

DRAWBACKS

° If processor issues request to recently evicted block and read

miss occurs
,
L2 level of cache may supply outdated data as

dirty block is in write buffer

° In other words
,
RAW hazard

6 . Sixth Optimisation : Avoid Address Translation in cache Indexing
To Reduce Hit Time

° Virtual address

virtual page
]

page offset
)

)
cache

> physical
PI PT caches frame address

physically indexed number

physically tagged
"

TLB

total Hit Latency -- TLB hit latency + cache hit latency

° Solution: VIPT Cache : virtually Indexed Physically tagged caches

(indexing into cache using page offset)

° Do not wait for VA to translate to PA ; extract index

from VA and extract tag no from PA

Example :

virtual page

page offset

page size

>

-

- 4 KB

or 12 bits

offset
32 - bit address

eg : FC51908130-3 page offset PA -

- 00516 0813

> frame number

>
00516

TLB

1/0 Devices

• Every device associated with device drivers

° Moment device plugged in , system automatically detects

device and runs device driver

° Connected via buses Clines - 32 bit
,
64 bit etc)

* Coordination between devices
,
bus architecture

ACCESSING 1/0 DEVICES

←
sends addr to
Mem

,
etc

'Cbus master) falsifies,

° Decoding happens

1/0 Interface

Cpu
Main memory
unit

system bus

top

1/0 Bus

Printer magnetic
disk keyboard

yo Hierarchy

g
high speed
bus

low speed
f bus

Intel Example
→
old processor

bus speed
data

/ p transfer

(SATA)

USB bus

1/0 Interface

64 pins
addr line 32-bit
C 3

Cpu ,
data lines 32-bit

,
mem

^

control signals
✓ control lines

1- Memory Mapped yo

° Same memory mapped yo technique for data transfer and
Yo transfer

. No separate yo instructions ; all data transfer instr (LDR ,
STR)

16 bit addr s MO - Ib KB

cpu
: A 's - AO

, m , , ,gµz) 3 mchihfsmt2 : 4 MUX (48 KB)
A- 15 I Address

MSB { A , y s Decoder

>
M2 - 16 KB

✓
> Port A

A- 13 g Address

A- 12 3 Decoder sport B) Ycomodugeev
,

ices

> Port c printer,monitor)

) Port D

2
. 1/0 Mapped yo

° Separate yo data transfer instructions CINIout)

° In buffer
,
out buffer

16 bit addr s MO - Ib KB

"V
" "" "°

' m ' - 'b'' B) " Mcniff"2. 4 MUX (64 KB)
> M2 - 16 KB

Ais I Address enhancedMSB { A ,4 s Decoder
address

n , M3 - 16 KB
space101Mt s

one additional bit
v

g Port A
A- 15 g Address

A- 14 3 Decoder sport B) '

fomodugeev
,

ices

enhanced
address 2 Port c printer,monitor)
space
(same 2 bits) s Port D

DATA TRANSFER TECHNIQUES

1. Programmed Yo
• CPU executes program that transfers data between 110
device and memory

is synchronous
- fixed rate of transfer Cdictated by program)

d- it Asynchronous
- handshaking polling for sending / receiving data
- check status of devices
- status bit - polling technique

Ciii) Interrupt - driven
-

interrupt /exception → ISR
- CPU initiates data transfer and continues onto other

tasks

- When yo device ready , informs CPU through interrupt
- services interrupt with ISR and then returns back

- cc not wasted on polling

INTR

v
DI
n

CPU INTA

n ^
D2

D3

interrupt request bus master

CINTR)
,Device

CPU
controller c

interrupt acknowledge
(INTA) -

interrupt
vector

-

data bus

ARM Interrupt Table

- interrupt acknowledged after WB stage only

interrupt not
acknowle

here

✗
interrupt
acknowledged
here

IF ID EX MEM WB

a instruction cycle >

PRIORITY INTERRUPT CONTROLLER

° Multiple devices
, multiple interrupts (interrupt stack)

• Simultaneous interrupts dealt with by using priority
interrupt controller

° Sends interrupt vector to CPU for interrupt requests

• Controller connected to multiple devices on one side and

CPU on the other

<
,
INTRO and INTAO

<
INTR

priority <
>
INTRI and INTAI

CPU
INTA Interrupt <

,
INTRZ and INTA'd

>
Controller

< INTR} and INTA3

nested Interrupts
° If an interrupt is being serviced (say , by device DO) and

another interrupt (by device DD is requested , one of two

things can happen

1. The interrupt being serviced CDO) gets interrupted CDD

and serviced first before DO can complete executing.
This leads to the problem of nested interruption

2. The interrupt request for D1 is not serviced until the

ISR of DO completes executing. Here , no nesting occurs .

1. Nested interrupts

- - - → interrupt handler

normal execution interrupt enabled

interrupt (1)
< I interrupt (2)

return fr i interrupt (3)
Ir i
1 I

return to
;

return !
I

✓

2. Non - Nested Interrupt Handler CNNIH)

Polling technique

• Each device has associated with it a status bit coorl)

depicting whether or not it has requested for an

interrupt

• CPU polls the status bits to check which devices have

requested an interrupt

> 0 ←
device o

> I C device 1

CPU
> °

\ device 2
:

> 0 \
device npolling interrupt

Daisy chain technique
° Common INTR line for all devices

• INTA line connected in a daisy -chain fashion CINTACK)

° If device receives INTA : passes to next device if it has

not raised interrupt , else stops INTA and puts identifying
code on data bus

Processor Data Bus

a a

VADO
^

✓ADI VADZ

→ device 0 device1 device2 to

highest > PI Po > PI Po > next> PI PO
device

priority
✓

interrupt request
> INTR

CPU
interrupt acknowledge

INTACK

interrupt stack

A B

User stack v Interrupt stack ✓

User stack v

Heap ^

Heap a

code

0×00008000
Code

Interrupt stack v

0×00000000
Vector table

0×00000000 Vector table

Interrupt Handler

2. Direct Memory Access CDMA)

• External controller directly transfers data between yo

devices and memory without CPU intervention

• Bus in tristate / high impedance state bus is free

• DMA controller for block data transfer between devices

and memory

• Count register , starting address
, destination address required

by DMA ; CPU gives information to DMA controller

• Cycle stealing process DMA controller is bus master

and no further interrupts allowed

Bus architecture - see slides

